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THERMOCAPILLARY MOTION IN A GAS--LIQUID MIXTURE 

O. V. Voinov and V. V. Pukhnachev UDC 532.69 

i. Equation of Motion. Let a viscous incompressible liquid with gas bubbles be found 
in the region of space ft. The number of bubbles is sufficiently large that a number a << d 
can be found, where d is the diameter of ~, such that any sphere of radius a belonging to 
contains a number of bubbles N >> i. The bubbles are assumed to be spheres of identical 
radius R. If the characteristic distance between bubble centers ~ is sufficiently small in 
comparison with the characteristic distance L over which the mean mixture parameters vary, 
the concepts of mechanics of heterogeneous media (see, e.g., [i]) are valid. 

If the external mass forces are small and the acceleration of the liquid is also small, 
the main source of motion is the inhomogeneity of the temperature field in the liquid and 
the thermocapillary effect induced by it [2]. 

We denote by c the bulk concentration of the gas, by u and v the average velocities of 
the gas and liquid phases, respectively, and by T the temperature. The exact continuity 
equation (within the scope of fluid mechanics) for the liquid phase is 

O(i -- c)mt -5 div[(l -- c)v] = 0. (I.i) 

Allowing the gas density to satisfy pg = const, the continuity equation for the gas 
phase is similar to (i.i): 

8c/Ot -5 div(cu) = O. (i. 2) 

The possible gas-exchange process between bubbles and the liquid due to diffusion pro- 
cesses is not taken into account. For simplicity, we do not take into account either the 
more important process of bubble coagulation, which up to a certain extent is Justified in 
the case of a dilute system. 

Taking into account that the shear viscosity of a suspension of gas bubbles equals 
(i + c)~, where ~ is the viscosity of the liquid, and neglecting quadratic terms of order 
c a in the viscous stresses, one can write the momentum equation of the liquid in the form 

(l - -  c)dv/dt = --P-*VP -5 (t - -  c)g -5 2 d iv[( i  + c)vS],  ( 1 . 3 )  

where S is the velocity deformation tensor; p, pressure; and $, acceleration of the external 
mass forces. Equation (1.3) is valid for small Reynolds numbers of bubble flow and for 
sufficiently large characteristic times of motion, when effects of associated bubble masses 
can be neglected. 
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Equation (1.3) is at the same time a momentum equation of the mixture, since the gas 
density pg is low in comparison with the liquid density p. It is important to~ note that the 
thermocapillary effect does not give a direct contribution to (1.3), since in the quasi- 
stationary approximation the force acting on the gas bubbles vanishes [2]. 

Turning to the heat-transfer equation, it is natural to assume that the heat conductivity 
of the gas ~g is small in comparison with that of the liquid x. For the case ~ << ~ the 
heat conductivity of the mixture, determined by Maxwell's equation [3, 4], equa• 

~' = ~(i - -  3r (1 .4 )  

Generally speaking, convective transport during fluid flow of separate bubbles canaf- 
fect heat transport. The inhomogeneity of the velocity field of the fluid, generating bubble 
motion, has little effect on heat transport if the Peclet number calculated by the character- 
istic bubble velocity relative to the liquid and by the mean distance I between bubble centers 
is sufficiently small: 

Pet w l / x < < i  (1 .5 )  

(• is the temperature conductivity coefficient of the liquid). Under condition (1.5) the 
heat conductivity of the gas-liquid mixture is determined by Eq. (1.4), valid in the absence 
of relative phase motion. 

It is well known [5, 6] that the temperature dependence of the density/ heat conductivity, 
and heat capacity of the liquid is weaker by two orders of magnitude than the viscosity, and 
significantly weaker than the surface tension. Therefore, in the heat-transfer equation it is 
not necessary to take into account the variation in heat capacity and heat conductivity, and 
as a result one obtains the following equation for the temperature: 

The thermocapillary effect has the meaning of considering small Reynolds and Peeler 
numbers 

Re = w R ~ < < l ,  Pe = w R / X < < t .  

The latter condition is satisfied due to (i.5). The condition of small Reynolds number 
is usually satisfied for small Marangoni numbers 

R ~ d~ 
M = ~ + z  ~ ]lVrl. 

S i n c e  t he  bubb le  s i z e  i s  s m a l l  i n  compar i son  w i t h  t he  f low s c a l e  (R << L ) ,  a change  in  
along its surface is relatively small and is confined to a situation in which the surface 

tension ~ varies linearly with increasing temperature (usually decreasing). 

For the given liquid--gas pair, the condition M < 1 can be attained by choosing a suf- 
ficiently small R=]VT~. For example, for pure water near T = 20~ the Marangoni number is 
M < 1 if R2IVT] < i0- cm.deg. For liquid copper near the melting temperature M < 1 for 

2 �9 - - ~  R [TT[ < 1.3 i0 cm*deg. For small M the values of w and 7T are related by a linear depen- 
dence, having the following shape according to similarity and dimensionality theories [7]: 

w = KvT ,  w = u- -v ,  (1.7) 

where K = ~(c)]d~/dT]R/2~ accurately up to terms of order Re, Pc, and the ratios of dynamic 
viscosities and heat conductivities in the gas and in the liquid ~g/B and ug/R. For small 
bulk concentrations of the gas (c << l) the equation must transform to the equation for the 
velocity of thermocapillary motion relative to the bubble [2]. Therefore, �9 = 1 for c = 0. 

We stress that the coefficient K in (1.7) depends strongly on temperature. This occurs 
mostly due to the temperature dependence of the viscosity ~. 

System (i.1)-(1.3), (1.6), (1.7) contains nominally nine scalar equations for the nine 
unknown quantities: c, the three components of u and v, p, and T. In practice, equality 
(1.7) is an ultimate relation between u and v, and makes it possible =o reduce the number of 
unknown functions to six. 

We refine (1.7), related to taking into account the effect of a variance of velocities 
of separate bubbles. 
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2. Account of the Effect of Chaotic Motion. The velocities of motion of even nearest 
bubbles in the gas--liquid mix=ure differ strongly, generally speaking, among thenselves and 
are not equal to the mean bubble velocity. The reason for fluctuations is the impossibility 
of stable stationary states. It can be shown that a stationary state of thermocapillarymotion 
of an ordered bubble system is exponentially unstable even for small Reynolds numbers. This 
is already clear from stability considerations Of thermocapillary motion of an unconfined 
bubble chain moving perpendicularly to the chain axis. It is therefore natural to assume 
that in such a system chaotic bubble motion is established due to hydrodynamic forces. 
It is well known that one reason for stochastization of a dynamic system is instability of its 
stationary states. 

S=ochastization of motion due to hydrodynamic forces is, obviously, a general property 
of two-phase media in the presence of relative phase motion. It occurs for arbitrary Reynolds 
numbers and various forces generating relative motion. Exponential instability of motion of 
an ordered particle system in an ideal liquid was proved in [8]. Vibrational motion of bub- 
bles floating in a heavy liquid at finite Reynolds numbers was repeatedly observed in experi- 
ments [9]. 

The chaotic bubble motion in the nonuniform problem must be given by a diffusion type 
correction to Eq, (1.7): 

w i =  K v ~ T - - e - I D o v i c ,  ~, ~ = 1,2,3. ( 2 . 1 )  

The shape of the tensor Dij = Dij (c, w) is uniquely determined by dimenslonality consid- 
eratlons and space isotropy 

O u =  R Iwl[f~(c)Su + q~ (c) --/~(~)m,wdlwl~]. 

It is important to note that the second term in (2.1) is of small order R/L << I, where 
L is the scale of variation of mean quantities. Generally speaking, besides Vc Vw can pro- 
vide a contribution to (2.1). It is sensible, however, to restrict ourselves to the physi- 
cally obvious dependence of (2.1). 

Until recently, there were no closed expressions of type (2.1) in the theory of two- 
phase media, with the coefficients DiJ depending only on c and the relative phase velocities 
(or on VT to the same accuracy). The diffusion term in the expression for the relative 
motion velocity or in the phase interaction force is of significant value in problem of 
medium stability. 

The order of the coefficients Dij in (2.1) is determined by hydrodynamic interactions 
in the system. It is obvious, therefore, =hat DiJ § 0 for c + O, when =he bubble system is 
rarefied. 

We estimate approximately the order of the bubble dlffusion coefficient in a rarefied 
system, when the bubble radius R is much smaller =hen the mean distance between their cen- 
ters. Obviously, D ~ w,s, where w, is the mean-square velocity fluctuation of the bubble, 
and s a characteristic distance at which the characteristic velocity fluctuation w, occurs. 
The perturbation 7T at the given point, occurring due to the presence of bubbles at distance 
r, is of order r~ s'. The velocity perturbation due to these bubbles (the "Stokelet" term, 
decreasing as r -~, is absent) is of the same order r -s. Using a characteristic value r ~ l ,  
we find w, - [wIRS/~ s. Using the quantity s ~ 5, we finally obtain the estimate 

D , "  w . s  N ]w[ Rc~/s .  , ( 2 . 2 )  

3. One-Dimensional Motion. Most simple classes of solutions of system (1.1)-(1.3), 
(1.6), and (i.7) describe one-dlmensional motion wlth planar, cylindrical, and spherical 
waves. For one-dimensional motion the system admits further reduction of the order. Firstly, 
Eqs. (i.i), (1.2), (1.6), and (1.7) form in ~his case a closed subsys=em, after whose solu- 
tion the pressure is found from (1.3) by quadrature. Secondly, combining (i.i) and (1.2) and 
integrating over the spatial coordinate, we obtain a linear relation between the phase veloc- 
ities. Using this relation and equality (2.1) to express the velocities mentioned in terms 
of c and VT, 7c, and substituting the results into (i.i), (1.6), we obtain two coupled equa- 
tions for concentration and temperature, both being of secon d order if D # 0. We provide this 
system for motion with planar waves (the notation is ebvious): 

c t -}- [(KcTx -- Dc~--~(i -- c)]x = 0; (3.1) 

(~ - c) [ r~  - -  ( K c r ~  - -  O c ~  - -  I)  T ~  = ( ~ r ~ .  ( 3 . 2 )  
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Here f = f(t) is an arbi=rary function of time which must be determined together with the 
solution from further conditions, end X' is the heat-conductivlty coefficient of the mixture, 
generally dependent on c. 

For the system of quasilinear equations (3.1), (3.2) one can formulate various initlal- 
or boundary-value problems. We assume for simplicity that D ffi 0, and that K and X' are 
positive constants. It is required to find functions c(x, t), T(x, t) in the rectangle 0 < 
x < L, 0 < t < to and a function f(t)on the interval 0 < t < to, such as to satisfy Eqs. 
(3.1), (3.2), the initial conditions 

c(x, O) = co(x ), T(x, 0) = To(X); (3 .3 )  

the boundary condition at x ffi 0 

Tx(O, t) = ~o(~, f(~ = Kc(O, t)~o(t); (3 .4 )  

and boundary conditions at x = L 

rx(L, 0 = ~dt) ,  ](t) = Kc(L, t)~L(t ). (3 .5 )  

We assume that the following conditions are satisfied: co~ C*+a[0, L] (0 < a < i), 0~Go~ 

1 for 0~x~L; To ~CS+~[0, L], dTo/dx > 0 for 0~.~ x~L; ~o~ C(S+a)/2[0, to], ~L~C (s'§ 
[0, to], and co(0)$o(0) = eo(L)~L(0). There exists then a to > 0, so that problem (3.1)-(3.5) 
has a unique solution, with 0~ c~l and T x > 0 for all x~[0, L], t [0, to]. 

The physical interpretation of the problem is the following. The gas--llquld mixture 
occupies the space between the parallel solid impenetrable planes x - 0 and x = L. Initially, 
the concentration and temperature distributions are given, depending on x. The thermal flux 
is given at the boundaries x = 0 and x ffi L (the first two conditions (3.4), (3.5)), as well 
as the nonflow conditions for the liquid phase v = 0 (the second two conditions). If the 
thermal fluxes at the boundaries are independent of coordinates along the planes, the gener- 
ated thermocapillary motion is one-dimenslonal. 

Problem (3.1)-(3.5)~elong to a class of the so-called "inverse problems," where along 
with solution of a syst~a of differential equations one also finds the unknown coefficients 
of this system (in the present case function f(t)). The function can sometimes be found a 
priori. This situation arises, e.g., in the problem of spherically symmetric motion inside 
a sphere, on whose boundary is given a heat-exchange condition with the surrounding gas. Let 
now u and v denote the radial velocity components of the gas and liquid phases and let r = 
Ixl. From the conditions u = v ffi 0 at r = 0 we find f = 0, leading to the expressions u = 
(i -- c)KT r, v =--cKT r. For D ffi 0 the problem reduces to searching the function s(t), deter- 
mining the free boundary, and the functions c(r, t), T(r, t) from the relatlons c t + r-2[Kr '. 
c(l-- c)Tr] r = 0 at 0 < r < s(t), (i-- c) (T t- KcT~ = r-~(x'raTr)r; s(0) = so > 0, c(r, 0) = 
co(r), T(r, 0) = To(r); c and T are bounded, Cr, T r § 0, and r ~ 0; T r = --q[T-- Ts(t)] for 
r = s(t), ds/dt ---KcT r at r - s(t). In the penultimate conditions q - q(T) is the coeffi- 
cient of interphase heat exchange, and Ts(t) is the given temperature outside the medium. 
The last condition implies that the free boundary r - s(t) confines the liquid volume. It 
can be expected that under conditions To(r)/>0, T's(t)> 0 and appropriate smoothness condi- 
tions and matching in input data, the problem stated is correctly formulated, though we have 
not yet succeeded in proving that. Monotonic increase of the functions To and T s can be 
guaranteed in this case by positive u, and ultimately guarantees purification of the liquid 
medium from bubbles. 

If f~= cons= and D - 0, sYStem (3.1), (3.2) admits the self-slmilar solutlons 

= r = 

For f = 0 the solutlon in this ease consists in'the following: the gas-llquid mixture fills 
the half space x > 0, and for t " 0 has constant parameters c ffi co, u = v = 0, T = To. 
Initially, the temperature at the plane x = 0 undergoes a Jump discontinuity to the value T,, 
which is then maintained constant. The bubble motion generated at the edge of the plane 
x = 0 is determined by a system of ordinary differential equations which is not given here. 

The simplest nontrlvial solutlon of system (3.1), (3.2) with D # 0 is admitted in the 
case of a coefficient K independent of T. It corresponds to f = KGco, and has the form 

c = co, T = Gx, (3.5) 

where Co and G are constant, and 0 < co < i. It corresponds to motion with constant pres- 
sure, gas phase velocity KG, andvanlshlng velocity of the liquid phase. Below solution 
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(3.6) is investigated for stability with respect to one-dimensional perturbations. 

4. Stability of Thermocapillary Motion. Consider stability of stationary motion with 
plane waves to short-wave perturbations, when the wavelength of the perturbation is signif- 
icantly smaller than the size of the flow region L. For this we linearize the equation for 
the perturbation following from (3.1), (3.2). The expression for f is not perturbed, 6f ffi 0, 
which is directly related to the unperturbed boundary conditions. For short wavelengths one 
may neglect the dependence of coefficients on coordinates in the equations of perturbed 
motlon~ as well as the effect of boundaries, and seek small perturbations of the concentra- 
tion ~c and the temperature ~T in the approximate form 

6c = A exp(czt + ~kx), 6T = S exp (=t + ikx), 

where h and B are constants; a, a complex frequency; k, wave number; and kL >> i. The dis- 
persion equation is 

+ ( t - - c )  D k  ~ 

At low concentrations c << i the roots of Eq. (4.1) can be written in the form 
5 ~k =~=7-(i_~)I~k(K+~K:)r.+Dk,] +=(l 2 xk--br--~a&)(~Kr:+T~'K'~)+~ 

% = --  Zk ~- § 0 (c). 

Within the applicability of the model discussed D we always have Re aa < 0. The stability 
of the medium is determined by the expression 

, 5 cT~xk2 K ~ -  ( x -  D) K~ (4 .2 )  Re % = - -  Dk!  (l  - -  c) -k cT=Kr q- --f- (X -- D) ~ k~ + T~K ~ q- 0 (c ~) ~r  c-->- O. 

! 

If the coefficient of thermocapillary drift is independent of temperature (K T = 0) and 
diffusion is absent (D - 0)~ Eq. (4.2) describes an instability. This instability has essen- 
tially the nature of thermal instability (it vanishes for X § "), and has no analog in 
mechanics of two-phase media. 

Taking into account diffusion, the instability is retained in the region of sufficiently 
long waves. Due to the approximate estimate (2.2) 

D N c ~ P e z < < c  ~. ( 4 . 3 )  

(4.2) that accurately to small orders of c, the quantity Re ~ > 0 It is seen from Eq. 
is in the region 

It is here taken into account that KT x = w. In a significant region of wave numbers, 
the growth increment of the perturbation is nearly constant: 

In the small wave number region, when kX/[w[  + 0, we have Re al § 0. Taking into 
account the temperature dependence of the thermocapillary drift coefficient (~ ~ 0) changes 
substantially the asymptotic nature of Re ~z for k § 0. 

It is convenient to introduce the dimensionless notation 
t 

KT = W____~_ 2 2l) 

(4.3), Eq. (4.2) can be reduced to simple form, neglecting the small Taking into account 
2 e and D/X: 

5cw ~ + I- n Re% -~-- ( - -  - ~  -'k -2-~ - ~ ] .  

The effect of the temperature dependence of the thermocapillary drift coefficient (H 
0) is determined by the sign of K'T, and is differently manifested in various wave number 
regions. 
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For ~ < 0 the critical Q value decreases with respect to Q,, the instability advances 
toward the region of shorter waves, and the system becomes at the same time stable in the 
region Q >> i (long waves). 

For E > 0 the boundary of the region of short-wave stability can be extended: from Q = 
Q, << 1 at H = 0 to Q ~ 1 at E > 2/3. In this region of long waves, however (i.e., for 
Q + ~), we have Re ~i ->const > 0. 

The regions of large and small Q have a clear physical meaning. For Q > 1 the bubbles 
move relatively faster than the thermal wave front (by a distance on the order of the per- 
turbation wavelength), and the situation is the opposite for Q < i. Thus, the increase of 
the thermocapillary drift coefficient with temperature leads to instability enhancement if 
the bubbles move faster than the thermal wave (lwl > xk3~72), and significantly enhances 
the stability if the bubbles move relatively slowly. When K' T < 0 the situation is the op- 
posite. 

Usually K' T > 0 for bubbles in the liquid. The quantity ~ is appreciable for sufficiently 
small bubbles, as well as for low-viscosity liquids. Thus, for water at 20~ we have ~ ~ i 
for bubbles of radius R ~ i0 -s cm. 

The instability is significant only for sufficient flow extension L if the Peclet number 
satisfies IwlL/x >> 1 (for moderate values IEI ~ I). In other words, as can be shown 
from Eq. (4.2), the perturbations are removed together with the bubbles from the region under 
consideration until there is a considerable increase in amplitude. 

If K' T = 0, the solution (3.6) is the exact solution of system (3.1), (3.2) with f = 
const. In this case the preceding analysis makes it possible to draw conclusions concerning 
the stability of the uniform bubble distribution in space in the presence of a constant tem- 
perature gradient. For D = 0 this distribution is absolutely unstable. Account of bubble 
diffusion (D# 0) stabilizes short-wave perturbations with Ik] < k,, but outside this region 
of wave numbers the instability is retained. 
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